4.6 Article

Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal

Journal

MULTIMEDIA TOOLS AND APPLICATIONS
Volume 78, Issue 24, Pages 35401-35418

Publisher

SPRINGER
DOI: 10.1007/s11042-019-08110-1

Keywords

Salt-and-pepper noise; Non-linear functions; Noise removal; Matrix algebra; Image denoising; Riesz mean

Funding

  1. Office of Scientific Research Projects Coordination at Canakkale Onsekiz Mart University [FHD-2018-1409]

Ask authors/readers for more resources

In this study, we propose a new method, i.e. Adaptive Riesz Mean Filter (ARmF), by operationalizing pixel similarity for salt-and-pepper noise (SPN) removal. Afterwards, we compare the results of ARmF, A New Adaptive Weighted Mean Filter (AWMF), Different Applied Median Filter (DAMF), Noise Adaptive Fuzzy Switching Median Filter (NAFSMF), Based on Pixel Density Filter (BPDF), Modified Decision-Based Unsymmetric Trimmed Median Filter (MDBUTMF) and Decision-Based Algorithm (DBA) by using Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), Image Enhancement Factor (IEF), and Visual Information Fidelity (VIF) for 20 traditional test images (Lena, Cameraman, Barbara, Baboon, Peppers, Living Room, Lake, Plane, Hill, Pirate, Boat, House, Bridge, Elaine, Flintstones, Flower, Parrot, Dark-Haired Woman, Blonde Woman, and Einstein), 40 test images in the TESTIMAGES Database, and 200 RGB test images from the UC Berkeley Dataset ranging in noise density from 10% to 90%. Moreover, we compare the running time of these algorithms. These results show that ARmF outperforms the methods mentioned above. We finally discuss the need for further research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available