4.7 Article

On the origin of wide-orbit ALMA planets: giant protoplanets disrupted by their cores

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 489, Issue 4, Pages 5187-5201

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stz2497

Keywords

planets and satellites: composition; planets and satellites: formation; planet-disc interactions; protoplanetary discs; brown dwarfs

Funding

  1. Science and Technology Funding Council (STFC) [ST/N504117/1, ST/N000757/1]
  2. STFC Distributed Research Utilising Advanced Computing (DiRAC) HPC Facility [ST/H00856X/1, ST/K000373/1]
  3. STFC [ST/M007006/1, ST/M007065/1, ST/S002529/1, ST/H00856X/1, ST/T001372/1, ST/R00689X/1, ST/S000453/1, ST/R002363/1, 1794975, ST/R000832/1, ST/N000757/1, ST/M007618/1, ST/R001049/1, ST/R001006/1, ST/P002307/1, ST/K000373/1, ST/N504117/1, ST/M007073/1, ST/M006948/1, ST/K001000/1, ST/T001550/1, ST/T001348/1, ST/T001569/1, ST/R001014/1] Funding Source: UKRI

Ask authors/readers for more resources

Recent ALMA observations may indicate a surprising abundance of sub-Jovian planets on very wide orbits in protoplanetary discs that are only a few million years old. These planets are too young and distant to have been formed via the core accretion (CA) scenario, and are much less massive than the gas clumps born in the classical gravitational instability (GI) theory. It was recently suggested that such planets may form by the partial destruction of GI protoplanets: energy output due to the growth of a massive core may unbind all or most of the surrounding pre-collapse protoplanet. Here we present the first 3D global disc simulations that simultaneously resolve grain dynamics in the disc and within the protoplanet. We confirm that massive GI protoplanets may self-destruct at arbitrarily large separations from the host star provided that solid cores of mass similar to 10-20 M-circle dot. are able to grow inside them during their pre-collapse phase. In addition, we find that the heating force recently analysed by Masset & VelascoRomero (2017) perturbs these cores away from the centre of their gaseous protoplanets. This leads to very complicated dust dynamics in the protoplanet centre, potentially resulting in the formation of multiple cores, planetary satellites, and other debris such as planetesimals within the same protoplanet. A unique prediction of this planet formation scenario is the presence of sub-Jovian planets at wide orbits in Class 0/I protoplanetary discs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available