4.7 Article

Bridge deck delamination identification from unmanned aerial vehicle infrared imagery

Journal

AUTOMATION IN CONSTRUCTION
Volume 72, Issue -, Pages 155-165

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.autcon.2016.08.024

Keywords

-

Funding

  1. Federal Highway Administration within the scope of the Long Term Bridge Performance Program [DTFH61-08-C-00005]
  2. American Society for Non Destructive Testing
  3. Civil, Architectural and Environmental Engineering Department of Drexel University

Ask authors/readers for more resources

The rapid, cost-effective, and non-disruptive assessment of bridge deck condition has emerged as a critical challenge for bridge maintenance. Deck delaminations are a common form of deterioration which has been assessed, historically, through chain-drag techniques and more recently through nondestructive evaluation (NDE) including both acoustic and optical methods. Although NDE methods have proven to be capable to provide information related to the existence of delaminations in bridge decks, many of them are time-consuming, labor-intensive, expensive, while they further require significant disruptions to traffic. In this context, this article demonstrates the capability of unmanned aerial vehicles (UAVs) equipped with both color and infrared cameras to rapidly and effectively detect and estimate the size of regions where subsurface delaminations exist. To achieve this goal, a novel image post-processing algorithm was developed to use such multispectral imagery obtained by a UAV. To evaluate the capabilities of the presented approach, a bridge deck mockup with pre-manufactured defects was tested. The major advantages of the presented approach include its capability to rapidly identify locations where delaminations exist, as well as its potential to automate bridge-deck related damage detection procedures and further guide investigations using other higher accuracy and ground-based approaches. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available