4.6 Article

Application of Composite NanoMaterial to Determine Phenols in Wastewater by Solid Phase Micro Membrane Tip Extraction and Capillary Electrophoresis

Journal

MOLECULES
Volume 24, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/molecules24193443

Keywords

phenol; 3-aminophenol; wastewater; SPMMTE; capillary electrophoresis

Funding

  1. Deanship of Scientific Research at Princess Nourah bint Abdulrahman University [RGP-1440-0017]

Ask authors/readers for more resources

Composite nanoparticles were used in solid phase micro membrane tip extraction and capillary electrophoresis to determine phenol and p-amino-phenol in wastewater. The optimized conditions were 100 g/L concentration, 40 min contact time, 11 pH, 5 mg/mL nanoparticles amounts, 60 min desorption time, 9 desorption pH and 298 K temperature. Capillary electrophoresis conditions were phosphate buffer (15 mM, pH 7.0) background electrolyte, 18 kV applied voltage, 214 nm UV detection, 30 s sample loading at 23 +/- 1 degrees C. The maximum percent uptakes of p-amino-phenol and phenol were 80.0 and 85.0%. High ratio recoveries of p-amino-phenol and phenol from nanomaterial were 99.0 and 98. Consequently, the actual extractions of p-amino-phenol and phenol from wastewater were 79.2 and 83.30 percent. The migration times of phenol and p-amino-phenol and were 9.0 and 12.0 min. The detection limits of phenol and p-amino-phenols were 0.1 and 0.2 mu g/L after extraction and CE. Therefore, this combination of solid phase micro membrane tip extraction and capillary electrophoresis may be considered as the ideal one for monitoring of toxic phenol and p-amino-phenol in water sample.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available