4.6 Article

Ultrasound-derived Biceps Femoris Long Head Fascicle Length: Extrapolation Pitfalls

Journal

MEDICINE AND SCIENCE IN SPORTS AND EXERCISE
Volume 52, Issue 1, Pages 233-243

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1249/MSS.0000000000002123

Keywords

MUSCLE ARCHITECTURE; ULTRASOUND IMAGING; HAMSTRINGS; INJURY PREVENTION; PENNATION ANGLE; PANORAMIC ULTRASOUND

Categories

Funding

  1. Balgrist Foundation Stiftung

Ask authors/readers for more resources

Purpose This study aimed to compare biceps femoris long head (BFlh) fascicle length (Lf) obtained with different ultrasound-based approaches: 1) single ultrasound images and linear Lf extrapolation, 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B), and 3) extended field of view (EFOV) ultrasound images. Methods Thirty-seven elite alpine skiers (21.7 +/- 2.8 yr) without a previous history of hamstring strain injury were tested. Single ultrasound images were collected with a 5-cm linear transducer from BFlh at 50% femur length and were compared with whole muscle scans acquired by EFOV ultrasound. Results The intrasession reliability (intraclass correlation coefficient [ICC3,k]) of Lf measurements was very high for both single ultrasound images (i.e., Lf estimated by linear extrapolation; ICC3,k = 0.96-0.99, SEM = 0.18 cm) and EFOV scans (ICC3,k = 0.91-0.98, SEM = 0.19 cm). Although extrapolation methods showed cases of Lf overestimation and underestimation when compared with EFOV scans, mean Lf measured from EFOV scans (8.07 +/- 1.36 cm) was significantly shorter than Lf estimated by trigonometric equations A (9.98 +/- 2.12 cm, P < 0.01) and B (8.57 +/- 1.59 cm, P = 0.03), but not significantly different from Lf estimated with manual linear extrapolation (8.40 +/- 1.68 cm, P = 0.13). Bland-Altman analyses revealed mean differences in Lf obtained from EFOV scans and those estimated from equation A, equation B, and manual linear extrapolation of 1.91 +/- 2.1, 0.50 +/- 1.0, and 0.33 +/- 1.0 cm, respectively. Conclusions The typical extrapolation methods used for estimating Lf from single ultrasound images are reliable within the same session, but not accurate for estimating BFlh Lf at rest with a 5-cm field of view. We recommend that EFOV scans are implemented to accurately determine intervention-related Lf changes in BFlh.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available