4.2 Article

Synthesis and anti-endoplasmic reticulum stress activity of N-substituted-2-arylcarbonylhydrazinecarbothioamides

Journal

MEDICINAL CHEMISTRY RESEARCH
Volume 28, Issue 12, Pages 2142-2152

Publisher

SPRINGER BIRKHAUSER
DOI: 10.1007/s00044-019-02442-1

Keywords

Endoplasmic reticulum stress; 2-Arylcarbonylhydrazinecarbothioamides; Chemical chaperone; Misfolded protein

Ask authors/readers for more resources

Misfolded or unfolded proteins are accumulated in lumen of endoplasmic reticulum (ER) in ER stress condition. It has been implicated in many pathological conditions such as Alzheimer's disease, diabetic retinopathy, atherosclerosis, beta-cell apoptosis and lung inflammation. We found a series of N-substituted-2-arylcarbonylhydrazinecarbothioamides to potently decrease ER stress signal, showing up to almost 300-fold better activity than 1-hydroxynaphthoic acid and tauro-ursodesoxycholic acid, positive controls, respectively. Structure-activity relationship (SAR) study showed that 2-arylcarbonyl moiety is critical for the activity of the hydrazinecarbothioamide analogues and side chains tethering on thioamide moiety were relatively insensitive to the activity. Some analogues were found to consistently exert the potency under more physiologically relevant condition where ER stress was induced by palmitic acid. ER stress markers such as CHOP and phosphorylated eIF2 alpha and PERK were accordingly decreased in western blotting upon treatment of compound 4h. Potential ER stress inhibitory activity and novel structures could provide a novel platform for new chemical chaperone and therapy for protein misfolding diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available