4.6 Article Proceedings Paper

Performance evaluation of a locally modified PV module to a PV/T solar collector under climatic conditions of semi-arid region

Journal

MATHEMATICS AND COMPUTERS IN SIMULATION
Volume 167, Issue -, Pages 135-154

Publisher

ELSEVIER
DOI: 10.1016/j.matcom.2019.09.013

Keywords

PV/T collector; Photovoltaic module; Thermal performance; Numerical model; Semi-arid region; Experimentation

Funding

  1. 'Renewable Energy Applied Research Unit, URAER, Renewable Energy Development Center (CDER)' of Ghardaia, Algeria

Ask authors/readers for more resources

A hybrid photovoltaic/thermal (PV/T) collector is used to produce simultaneously electrical and heat energy from solar irradiation through electrical and thermal photo-conversion processes. In this paper, a mathematical model has been developed and detailed based on heat transfer balance equations, electrical and thermo-physical proprieties to draw the output behavior of both PV module and hybrid PV/T water-based system and estimate carefully their energy performance. The PV/T collector has been manufactured and built locally so as to be simple, flexible and efficient to meet the energy needs of an individual housing in a semi-arid region. A sample of meteorological conditions of semi-arid region (Ghardaia city, Algeria) is used to test and evaluate experimentally the performance of both PV module and the designed PV/T collector. Furthermore, the mathematical model has been converted into a numerical program under MATLAB environment. The simulation results have been compared and successfully validated through the experimental results under the same operating conditions. The obtained results show the evolution of thermal and electrical parameters (temperatures, Open-circuit voltage, Short circuit current) during the day test, and also the energy performances of the system (Thermal and electrical powers and efficiencies). The electrical, thermal, and overall efficiencies have reached 6.78%, 0 and 17.43% respectively for the PV module and 7%, 61% and 79.43% respectively for the PV/T collector. The results show that the presented collector can be effectively a simple and efficient energy solution for individual housing in semi-arid regions. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available