4.6 Article

Spatiotemporal changes of permafrost in the Headwater Area of the Yellow River under a changing climate

Journal

LAND DEGRADATION & DEVELOPMENT
Volume 31, Issue 1, Pages 133-152

Publisher

WILEY
DOI: 10.1002/ldr.3434

Keywords

changing climate; Headwater Area of the Yellow River (HAYR); permafrost; spatiotemporal change

Funding

  1. National Natural Science Foundation of China [91647103, 41971093]
  2. Subproject of the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) [XDA20100103]
  3. State Key Laboratory of Frozen Soil Engineering [SKLFSEZQ-43]

Ask authors/readers for more resources

This article attempts to predict the spatiotemporal changes of permafrost in the Headwater Area of the Yellow River (HAYR) on the northeastern Qinghai-Tibet Plateau, Southwest China by using field monitoring and numerical models. Permafrost in the HAYR is categorized into four types: low- and high-ice-content high-plain permafrost and low- and high-ice-content alpine permafrost. According to these permafrost types, changes in permafrost temperature were calculated by coupling a geometric model with the soil thermal conduction model. Based on the calculation results, this paper evaluates the changes of permafrost in the HAYR over the past 50 years and predicts the change trends of permafrost in the HAYR under the scenarios of RCP2.6, RCP6.0, and RCP8.5 for possible climate change in 2050 and 2010 from the Intergovernmental Panel on Climate Change Fifth Assessment Report. The results show that (a) in the process of permafrost degradation, the same permafrost type at different degradation stages results in different modes and rates of increasing temperature. The response of permafrost to climate change differs in various degradation stages of permafrost; (b) from 1972 to 2012, the areal extent of permafrost degradation was 1,056 km(2), resulting from a sharp air temperature increase after the 1980s. By 2050, the areal extent of permafrost degradation into seasonal frost is similar under the three scenarios of climate change. The areal extent of permafrost degradation is 2,224, 2,347, and 2,559 km(2) or 7.5%, 7.9%, and 8.6% of the total area in the HAYR, respectively. In RCP2.6, the areal extent of permafrost degradation into seasonal frost by 2100 would be approximately 3,500 km(2) greater than that by 2050. In RCP6.0, the areal extent of permafrost degradation by 2100 would be 10,000 km(2) or 32.9% of the total area in the HAYR. In RCP8.5, the area of permafrost degradation by 2100 would be 18,492 km(2) or 62.2% of the total area in the HAYR; (c) the active layer thickness (ALT) in the HAYR would increase significantly. The average of the ALT was 1.51 m by 1972 and 2.01 m by 2012, respectively. Under the RCP2.6, RCP6.0, and RCP8.5 scenarios, the basin-wide average of ALT would be 2.21, 2.40, and 3.08 m by 2050 and 2.78, 4.07, and 4.39 m by 2100, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available