4.0 Article

Design and Characterization of Nanocomposite Catalysts for Biofuel Conversion into Syngas and Hydrogen in Structured Reactors and Membranes

Journal

KINETICS AND CATALYSIS
Volume 60, Issue 5, Pages 582-605

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S0023158419050082

Keywords

nanocrystalline mixed oxides; fluorite; perovskite; spinel structures; synthesis; characterization of the structure; surface; mobility and reactivity of oxygen; catalysis of biofuel conversion into syngas; mechanism; structured catalysts and catalytic membranes; performance and stability; mathematical modeling

Funding

  1. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences [0303-2016-0013]
  2. Russian Science Foundation [18-73-10167]
  3. Russian Science Foundation [18-73-10167] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

This review considers the problems associated with the development and operation of highly active and stable structured catalysts for biogas/biofuel conversion into syngas and hydrogen based on nanocrystalline oxides with fluorite, perovskite, and spinel structures and their nanocomposites promoted by nanoparticles of platinum group metals and alloys based on nickel. The design of these catalysts is based on finding the relationships between the methods of their synthesis, composition, real structure/microstructure, surface properties, and oxygen mobility and reactivity largely determined by the metal-support interaction. This requires the use of modern structural, spectroscopic, kinetic methods, and mathematical modeling. Thin layers of optimized catalysts deposited on structured heat-conducting supports demonstrated high activity and resistance to carbonization in the processes of biogas and biofuels conversion into syngas, and catalysts deposited on asymmetric ceramic membranes with mixed ionic-electronic conductivity allowed oxygen or hydrogen to be separated from complex mixtures with 100% selectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available