4.5 Article

Acclimation capability inferred by metabolic performance in two sea cucumber species from different latitudes

Journal

JOURNAL OF THERMAL BIOLOGY
Volume 84, Issue -, Pages 407-413

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtherbio.2019.07.019

Keywords

Eurytherms; Stenotherms; Holothuria scabra; Holothuria forskali; Energy metabolism; Temperature stress

Funding

  1. Fundacao para a Ciencia e Tecnologia (FCT), through project PROTEOME - COMPETE [PTDC/AAG-MAA/1302/2014, POCI-01-0145-FEDER-016773]
  2. FCT
  3. Deutscher Akademischer Austauschdienst (DAAD)
  4. Centro 2020 program, Portugal 2020, European Union, through the European Regional Development Fund [Centro-01-0145-FEDER-000018]
  5. Leibniz project budget [6057]
  6. NAM-fellowship
  7. Fundacao para a Ciencia e Tecnologia (FCT) [UID/MAR/04292/2013, SFRH/BD/122082/2016, SFRH/BPD/94500/2013]
  8. Fundação para a Ciência e a Tecnologia [SFRH/BD/122082/2016, PTDC/AAG-MAA/1302/2014] Funding Source: FCT

Ask authors/readers for more resources

The notion that thermal specialists from tropical regions live closer to their temperature limits than temperate eurytherms, seems too generalized. Species specific differences in physiological and biochemical stress reactions are linked to key components of organism fitness, like metabolic capacity, which indicates that acclimation potential across latitudes might be highly diverse rather than simplistic. In this study the exposure of a tropical (Holothuria scabra) and a temperate (Holothuria forskali) sea cucumber species to identical cold- and warm-acclimation stress was compared using the key metabolic parameters, respiration rate, enzyme activity (ETS, LDH, IDH), and energy reserve fractions (lipid, carbohydrate and protein). Results show much broader respiratory adjustments, as response to temperature change, in H. scabra (2-30 mu gO(2)*gww(-1)*h(-1)) compared to H. forskali (1.5-6.6 mu gO(2)*gww(-1)*h(-1)). Moreover, the tropical species showed clearly pronounced up and down regulation of metabolic enzymes and shifts in energy reserves, due to thermal acclimation, while the same metabolic indicators remained consistent in the temperate species. In summary, these findings indicate enhanced metabolic plasticity in H. scabra at the cost of elevated energy expenditures, which seems to favor the tropical stenotherm in terms of thermal acclimation capacity. The comparison of such holistic metabolic analyses between conspecifics and congeners, may help to predict the heterogeneous effects of global temperature changes across latitudinal gradients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available