4.7 Article

Effectiveness of homogeneous-heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 139, Issue 5, Pages 3185-3195

Publisher

SPRINGER
DOI: 10.1007/s10973-019-08712-9

Keywords

Maxwell fluid; Coaxially rotating disks; Homogeneous-heterogeneous reactions; Cattaneo-Christov heat flux model; Numerical solutions

Ask authors/readers for more resources

The current paper deals with the role of Cattaneo-Christov heat flux conduction model in rotating axisymmetric flow of Maxwell fluid between two coaxially spiraling disks. This model is a revised version of classical Fourier's law which predicts the thermal relaxation characteristics. Two disparate situations, such as when the direction of rotation of both disks is same and opposite, are addressed. The system of nonlinear ordinary differential equations narrating momentum, energy and concentration equations is obtained with the transformations executed by von Karman. A finite difference algorithm-based scheme, namely bvp4c, is implemented for numerical solution. The graphical and tabular trends for radial, azimuthal and axial flows as well as temperature and concentration fields are displayed against various pertinent parameters. The significant outcomes reveal that the impact of Deborah number is to decrease the velocity components in all directions. Additionally, the temperature field decays with the thermal relaxation time. Moreover, a decrease in fluid concentration is observed with increasing homogeneous-heterogeneous reactions parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available