4.7 Article Proceedings Paper

Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 139, Issue 4, Pages 2679-2689

Publisher

SPRINGER
DOI: 10.1007/s10973-019-08838-w

Keywords

Nanofluid; GMDH; Thermal conductivity; Artificial neural network

Ask authors/readers for more resources

Nanofluids are employed in different thermal devices due to their enhanced thermophysical features which lead to noticeable heat transfer augmentation. One of the major reasons of the heat transfer improvement by using the nanofluids is their increased thermal conductivity. Several methods have been applied to estimate this property of nanofluids such as correlations and artificial neural networks (ANNs). In the present paper, group method of data handling (GMDH) and a mathematical correlation are proposed for forecasting the thermal conductivity of nanofluids containing CuO nanoparticles. The inputs of the both models are the base fluids' thermal conductivities, concentration, temperature and nanoparticle dimension. Comparison of the forecasted data by these two approaches revealed more favorable performance of GMDH. The values of R-squared in the cases where polynomial and ANN were utilized were 0.9862 and 0.9996, respectively. Moreover, the average absolute relative deviation values were 5.25% and 0.881% for the indicated methods, respectively. According to these statistical values, it is concluded that employing the ANN-based regression leads to more confident model for forecasting the TC of the nanofluids containing CuO nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available