4.7 Article

Particle rotations and energy dissipation during mechanical compression of granular materials

Journal

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
Volume 129, Issue -, Pages 19-38

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2019.04.018

Keywords

Granular materials; Inter-particle forces; Energy dissipation; X-ray tomography; 3D X-ray diffraction

Funding

  1. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]
  2. LLNL's Laboratory Directed Research and Development (LDRD) program [17-LW-009]
  3. Vetenskapsradet [729 2015-04398]
  4. Johns Hopkins University's Whiting School of Engineering

Ask authors/readers for more resources

We present new in-situ measurements of particle rotations and energy dissipation during compression of 3D packings of stiff, frictional particles. Two confined, uniaxial compression tests with different degrees of lateral confinement are discussed. X-ray computed tomography and 3D X-ray diffraction were combined to provide inter-particle forces, slip and roll distances, twist angles, and energy dissipation at all inter-particle contacts. Each of these measured quantities followed exponential distributions above their respective mean values and power-law distributions below their mean values in both experiments. Changes in these distributions during experiments suggest that the quantities generally became more homogeneous with increasing overall sample stress. Contact roll and slip distances, twist angles, and energy dissipation were all more heterogeneous than inter-particle normal force magnitudes in both experiments. Energy dissipation due to inter-particle slipping accounted for 95% of the total energy dissipated in both experiments. Dissipation mechanisms at inter-particle contacts bearing more than the mean normal force were responsible for approximately 70% of each sample's dissipated energy at each load step, even though these contacts constituted approximately 40% of the total number of contacts. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available