4.8 Article

Imidazole-Linked Crystalline Two-Dimensional Polymer with Ultrahigh Proton-Conductivity

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 141, Issue 38, Pages 14950-14954

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b06080

Keywords

-

Funding

  1. University Grants Commission (UGC), India
  2. Science and Engineering Research Board (SERB) [EMR/2014/000987]

Ask authors/readers for more resources

Proton-exchange membrane fuel cells are promising energy devices for a sustainable future due to green features, high power density, and mild operating conditions. A facile proton-conducting membrane plays a pivotal role to boost the efficiency of fuel cells, and hence focused research in this area is highly desirable. Major issues associated with the successful example of Nafion resulted in the search for alternate proton conducting materials. Even though proton carrier loaded crystalline porous organic frameworks have been used for protonconduction, the weak host-guest interactions limited their practical use. Herein, we developed a crystalline 2D-polymer composed of benzimidazole units as the integral part, prepared by the condensation of aryl acid and diamine in polyphosphoric acid medium. The imidazole linked-2D-polymer exhibits ultrahigh proton conductivity (3.2 X 10(-2) S cm(-1)) (at 95% relative humidity and 95 degrees C) in the pristine state, which is highest among the undoped porous organic frameworks so far reported. The present strategy of a crystalline proton-conducting 2D-polymer will lead to the development of new high performing crystalline solid proton conductor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available