4.5 Article

Current kinase inhibitors cover a tiny fraction of fragment space

Journal

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
Volume 25, Issue 11, Pages 2372-2376

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmcl.2015.04.005

Keywords

Kinase; Chemical space; Fragment-based drug discovery; Fragmentation; Tricyclic ring systems

Ask authors/readers for more resources

We analyze the chemical space coverage of kinase inhibitors in the public domain from a fragment point of view. A set of 26,668 kinase inhibitors from the ChEMBL database of bioactive molecules were decomposed automatically by fragmentation at rotatable bonds. Remarkably, about half of the resulting 10,302 fragments originate from inaccessible libraries, as they are not present in commercially available compounds. By mapping to the established kinase pharmacophore models, privileged fragments in sub-pockets are identified, for example, the 5681 ring-containing fragments capable of forming bi-dentate hydrogen bonds with the hinge region in the ATP binding site. Surprisingly, hinge-binding fragments in current kinase inhibitors cover only 1% of the potential hinge-binders obtained by decomposing a library of nearly 7.5 million commercially available compounds, which indicates that a large fraction of chemical space is unexplored. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available