4.5 Article

Anatomy of Microscopic Structure of Ethaline Deep Eutectic Solvent Decoded through Molecular Dynamics Simulations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 123, Issue 39, Pages 8291-8299

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.9b06624

Keywords

-

Funding

  1. IIT Delhi
  2. Department of Science and Technology (DST), India, through the FIST grant

Ask authors/readers for more resources

Atomistic molecular dynamics simulations have been performed to investigate the microscopic structure of ethaline deep eutectic solvent (DES), a mixture of choline chloride ([Ch][Cl]) and ethylene glycol (EG) in molar ratio of 1:2, respectively. As much as the structure of a DES is derived by the composition of the species present in it, the chemical nature of the hydrogen bond donor species involved also plays a crucial role in laying down the microscopic structure of DESs. By virtue of its inherent chemical structure, EG renders both intra- and intermolecular hydrogen bonds. Therefore, the molecular level structural landscape of DESs containing EG as hydrogen bond donor is reckoned to be a bit complex. In the present study, we aim to understand the structural morphology of ethaline using optimum force-field parameters for EG recently proposed by our group. After an initial assessment of the refined force-field parameters for ethaline DES, we have presented an in-depth analysis of the arrangement and ordering of its components at the molecular level. Simulated X-ray scattering structure function and its partial components reveal the presence of short-range as well as long-range interactions in ethaline. The role of hydrogen bonding interactions among all the three species [Ch](+), [Cl](-), and EG was predominantly observed through radial and radial-angular distribution functions and substantiated by spatial distribution functions. The observation of the competitive nature of [Ch](+) and EG to form a hydrogen bond with the anion is one of the major outcomes of the present study. Also, weaker intra- and intermolecular hydrogen bonding interactions between EG molecules were seen along with their simultaneous involvement with the ammonium group of the choline cation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available