4.5 Article

Mantle Dynamics of the Central Atlantic Magmatic Province (CAMP): Constraints from Platinum Group, Gold and Lithophile Elements in Flood Basalts of Morocco

Journal

JOURNAL OF PETROLOGY
Volume 60, Issue 8, Pages 1621-1651

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/petrology/egz041

Keywords

platinum group elements; flood basalt; mantle melting modelling; large igneous province; geodynamics

Funding

  1. Danish National Research Foundation Niels Bohr Professorship grant [26-123/8]
  2. Geocenter Denmark grant

Ask authors/readers for more resources

Mantle melting dynamics of the Central Atlantic Magmatic Province (CAMP) is constrained from new platinum group element (PGE), gold (Au), rare earth element (REE), and high field strength element (HFSE) data and geochemical modelling of flood basalts in Morocco. The PGE are enriched similarly to flood basalts of other large igneous provinces. The magmas did not experience sulphide saturation during fractionation and were therefore fertile. The CAMP is thus prospective for PGE and gold mineralization. The Pt/Pd ratio of the Moroccan lavas indicates that they originated by partial melting of the asthenospheric mantle, not the subcontinental lithospheric mantle. Mantle melting modelling of PGE, REE and HFSE suggests the following: (1) the mantle source for all the lavas was dominated by primitive mantle and invariably included a small proportion of recycled continental crust (<8%); (2) the mantle potential temperature was moderately elevated (c. 1430 degrees C) relative to ambient mantle; (3) intra-lava unit compositional variations are probably a combined result of variable amounts of crust in the mantle source (heterogeneous source) and fractional crystallization; (4) mantle melting initially took place at depths between c. 110 and c. 55 km and became shallower with time (c. 110 to c. 32 km depth); (5) the melting region appears to have changed from triangular to columnar with time. These results are best explained by melting of asthenospheric mantle that was mixed with continental sediments during the assembly of Pangaea, then heated and further mixed by convection while insulated under the Pangaea supercontinent, and subsequently melted in multiple continental rift systems associated with the breakup of Pangaea. Most probably the CAMP volcanism was triggered by the arrival of a mantle plume, although plume material apparently was not contributing directly (chemically) to the magmas in Morocco, nor to many other areas of CAMP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available