4.5 Review

Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury

Journal

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY
Volume 134, Issue -, Pages 154-164

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.yjmcc.2019.07.009

Keywords

Small ubiquitin-related modifier; Myocardial ischemia/reperfusion injury; Key proteins

Funding

  1. National Natural Science Foundation of China [81570326]

Ask authors/readers for more resources

Myocardial ischemia/reperfusion (MI/R) injury has a great influence on the prognosis of patients with acute coronary occlusion. The underlying mechanisms of MI/R injury are complex. While the incidence of MI/R injury is increasing every year, the existing therapies are not satisfactory. Recently, small ubiquitin-related modifier (SUMO), which is a post-translational modification and involved in many cell processes, was found to play remarkable roles in MI/R injury. Several proteins that can be SUMOylated were found to interfere with different mechanisms of MI/R injury. Sarcoplasmic reticulum Ca2+ ATPase pump SUMOylation alleviated calcium overload. Among the histone deacetylase (HDAC) members, SUMOylation of HDAC4 reduced reactive oxygen species generation, whereas Sirt1 played protective roles in the SUMOylated form. Dynamic-related protein 1 modified by different SUMO proteins exerted opposite effects on the function of mitochondria. SUMOylation of hypoxia-inducible factors was fundamental in oxygen homeostasis, while eukaryotic elongation factor 2 SUMOylation induced cardiomyocyte apoptosis. The impact of other SUMOylation substrates in MI/R injury remains unclear. Here we reviewed how these SUMOylated proteins alleviated or exacerbated myocardial impairments by effecting the MI/R injury mechanisms. This may suggest methods for relieving MI/R injury in clinical practice and provide a reference for further study of SUMOylation in MI/R injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available