4.6 Article

IL-4 and IL-17A Cooperatively Promote Hydrogen Peroxide Production, Oxidative DNA Damage, and Upregulation of Dual Oxidase 2 in Human Colon and Pancreatic Cancer Cells

Journal

JOURNAL OF IMMUNOLOGY
Volume 203, Issue 9, Pages 2532-2544

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1800469

Keywords

-

Categories

Funding

  1. Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health
  2. Center for Cancer Research, National Cancer Institute, National Institutes of Health

Ask authors/readers for more resources

Dual oxidase 2 (DUOX2) generates H2O2 that plays a critical role in both host defense and chronic inflammation. Previously, we demonstrated that the proinflammatory mediators IFN-gamma and LPS enhance expression of DUOX2 and its maturation factor DUOXA2 through STAT1- and NF-kappa B-mediated signaling in human pancreatic cancer cells. Using a panel of colon and pancreatic cancer cell lines, we now report the induction of DUOX2/DUOXA2 mRNA and protein expression by the T(H)2 cytokine IL-4. IL-4 activated STAT6 signaling that, when silenced, significantly decreased induction of DUOX2. Furthermore, the T(H)17 cytokine IL-17A combined synergistically with IL-4 to increase DUOX2 expression in both colon and pancreatic cancer cells mediated, at least in part, by signaling through NF-kappa B. The upregulation of DUOX2 was associated with a significant increase in the production of extracellular H2O2 and DNA damage-as indicated by the accumulation of 8-oxo-dG and gamma H2AX-which was suppressed by the NADPH oxidase inhibitor diphenylene iodonium and a DUOX2-specific small interfering RNA. The clinical relevance of these experiments is suggested by immunohistochemical, microarray, and quantitative RT-PCR studies of human colon and pancreatic tumors demonstrating significantly higher DUOX2, IL-4R, and IL-17RA expression in tumors than in adjacent normal tissues; in pancreatic adenocarcinoma, increased DUOX2 expression is adversely associated with overall patient survival. These data suggest a functional association between DUOX2-mediated H2O2 production and induced DNA damage in gastrointestinal malignancies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available