4.2 Article

Preparation of metal-doped Cu-Mn/HTS-1 catalysts and their mechanisms in efficient degradation of toluene

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 88, Issue -, Pages 260-272

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2019.08.019

Keywords

Toluene degradation; Redox property; Lewis acid sites; Synergistic effect; Mars-Van-Krevelen (MVK) model

Funding

  1. Ministry of Education Blue Fire Program [CXZJH201717]
  2. Shijiazhuang Science and Technology Department [181240243A, 191240273A]

Ask authors/readers for more resources

In order to study their synergistic catalytic effects in toluene degradation, CuMn2O4/HTS-1 (HTS-1 was a titanium silicon molecular sieve), Cu0.7Mn2Y0.3Ox/HTS-1 and Cu0.7Mn2Ce0.3Ox/HTS-1 catalysts were prepared by the impregnation method. The textural properties, redox properties and acidity of the catalysts were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), H-2 temperature-programmed reduction (H-2-TPR), X-ray photoelectron spectroscopy (XPS), frustrated total internal reflection (FT-IR), ammonium temperature-programmed desorption (NH3-TPD) and pyridine adsorption internal reflection (Py-IR) measurements. The potential roles of Lewis acid sites (activating dioxygen) were discussed, and the experimental results indicated that the most efficient route for toluene degradation over Cu0.7Mn2Ce0.3Ox/HTS-1 (toluene conversion rate of 90% (T-99) = 295 degrees C) was ascribed to regulation of the synergistic effects of redox properties (activating molecular toluene) and Lewis acid sites (activating dioxygen). The Mars-Van-Krevelen (MVK) model was adopted to describe the reaction process of toluene oxidation, which gave an in-depth view into the toluene degradation over CuMn2O4/HTS-1, Cu0.7Mn2Y0.3Ox/HTS-1 and Cu0.7Mn2Ce0.3Ox/HTS-1. In addition, the synergistic effects between redox properties and Lewis acid sites were studied in detail. (C) 2019 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available