4.7 Article

Plant functional diversity drives carbon storage following vegetation restoration in Loess Plateau, China

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 246, Issue -, Pages 668-678

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.06.054

Keywords

C storage; Structural equation model; Functional diversity; Vegetation restoration; Loess plateau

Funding

  1. National Natural Sciences Foundation of China [41671280]
  2. Key foreign cooperation project of the Chinese Academy of Sciences [161461KYSB20170013]
  3. Key cultivation project of the Chinese Academy of Sciences

Ask authors/readers for more resources

Ongoing climatic changes induced by human activities increases in atmospheric carbon dioxide (CO2), which have considerable effects on the structure and function of ecosystems, including carbon (C) storage, plant functional traits and therefore on a wide set of ecosystem services. Plant functional diversity is benefit to improve plant photosynthesis and enhance C efficiency and therefore decrease CO2. Here, the focus of this article is on integrating of plant functional diversity and C storage, which aims to contribute to C sequestration for climate change mitigation following vegetation restoration in Loess Plateau, China. Firstly, the CWM (plant community-weighted mean) traits of the most abundant plant species can account for C storage in AGBC (above-ground biomass C), ALC (above-ground litter C), STC (soil total carbon) and TEC (total ecosystem carbon). Secondly, the CWM of plant height and LCC (leaf carbon concentration) had a positive effect C storage in different part (AGBC, ALC, STC and TEC), while the CWM of LNC (leaf nitrogen concentration) and SLA (specific leaf area) had a negative effect on C storage in different part. Further, the CWM of plant height, LCC, SLA and plant functional dispersion (FDis) can be used to predict C storage by multiple linear regression analysis. Finally, the positive association between FDis and C storage was found in SEM, shedding light on the key role of plant functional diversity driving C storage following vegetation restoration. The findings presented here highlight the importance of both plant traits of dominant species and plant functional diversity in regulating C storage, and show that favorable climate conditions, particularly vegetation restoration, tend to increase C storage and plant functional diversity, which have important implications for improving global C cycling and ecosystem services.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available