4.3 Article

Break-up behavior of droplets containing chlorine salt with the same valence cation under electric field via molecular dynamics simulation

Journal

JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY
Volume 41, Issue 14, Pages 2073-2081

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01932691.2019.1650756

Keywords

Break-up behavior; molecular dynamics; same valence cation; chlorine salt; uniform electric field

Ask authors/readers for more resources

Application of the electric field to water-in-oil system can accelerate the coalescence of droplets. However, when an excessively high electric field is applied, droplets will exhibit break-up behavior. In addition to the strength of the electric field, the salt type in droplets significantly affects their break-up behavior. However, the break-up behavior of droplets containing the same valence cation is rarely investigated, and the mechanism underlying the influence of ionic type remains unclear. In this study, the break-up behavior of droplets containing chlorine salt with the same valence cation is studied by molecular dynamics simulations. The influences of electric field strength and ionic type on the break-up behavior of droplets are analyzed. Simulation results demonstrate that the droplet deformation increases with the increase in the electric field, and the droplets break when the degree of deformation exceeds a critical value. The ionic type mainly affects the break-up time of droplets through drift velocity, which is proportional to the electric field strength and ionic mobility. Moreover, from Na+ to Cs+, the cationic mobility increases first and then decreases with the increase of crystallographic radius.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available