4.6 Article

Intensity mapping with neutral hydrogen and the Hidden Valley simulations

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1475-7516/2019/09/024

Keywords

cosmological simulations; baryon acoustic oscillations; galaxy clustering; redshift surveys

Funding

  1. U.S. Department of Energy
  2. NSF [1713791]
  3. National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]

Ask authors/readers for more resources

This paper introduces the HiddenValley simulations, a set of trillion-particle N-body simulations in gigaparsec volumes aimed at intensity mapping science. We present details of the simulations and their convergence, then specialize to the study of 21-cm fluctuations between redshifts 2 and 6. Neutral hydrogen is assigned to halos using three prescriptions, and we investigate the clustering in real and redshift-space at the 2-point level. In common with earlier work we find the bias of HI increases from near 2 at z = 2 to 4 at z = 6, becoming more scale dependent at high z. The level of scale-dependence and decorrelation with the matter field are as predicted by perturbation theory. Due to the low mass of the hosting halos, the impact of fingers of god is small on the range relevant for proposed 21-cm instruments. We show that baryon acoustic oscillations and redshift-space distortions could be well measured by such instruments. Taking advantage of the large simulation volume, we assess the impact of fluctuations in the ultraviolet background, which change HI clustering primarily at large scales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available