4.7 Article

Development of a sustainable and innovant hygrothermal bio-composite featuring the enhanced mechanical properties

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 229, Issue -, Pages 128-143

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.05.002

Keywords

Corn stalk; Moisture buffer capacity; Thermal properties; Bio-composites; Aging properties

Funding

  1. National Natural Science Foundation of China [51778363]

Ask authors/readers for more resources

In this study, machine controlled high compaction force was used to produce an innovant, sustainable and energy efficient bio-composite based on magnesium phosphate cement (MPC) as binder and corn stalk as bio-aggregate. Characterization of corn stalk was investigated by water absorption, image processing, scanning electron microscopy (SEM), x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. Mechanical, hygrothermal, aging and microstructural properties of bio-composites were examined. Compressive strength of bio-composites compacted by the machine was considerably higher than the manually compacted bio-composites. Capillary absorption and water absorption of bio-composites were lowered due to high compaction force. Increase in the temperature slightly affected the thermal properties of bio-composites. All the bio-composites were rated from good to excellent hygric regulators based on their moisture buffer performance. Influence of high compaction on the thermal, hygric and moisture buffer properties of bio-composites was discernible. Development of molds was detected on the specimens subjected to higher relative humidity level. Finally, formulated energy-efficient and sustainable bio-composites were classified into structural and insulation grade concrete. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available