4.7 Article

Scenario analysis of a sustainable water-food nexus optimization with consideration of population-economy regulation in Beijing-Tianjin-Hebei region

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 228, Issue -, Pages 927-940

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.04.319

Keywords

A water-food nexus; Stochastic-fuzzy programming; Scenario analysis; Beijing-Tianjin-Hebei region; Uncertainties

Funding

  1. National Social Science Fund of China [18BJL060]

Ask authors/readers for more resources

In the process of urban agglomeration, water-food security can be deemed as a key to support urban development and human living, but which can be challenged by expanded population growth, accelerated industrialization, unbalance regional economic development and diversity of weather (due to climate changes). In this study, a water resources allocation and food production (WF) optimization is developed for regional sustainability under multiple uncertainties. A hybrid two-stage fuzzy programming with Laplace criterion (TSFL) is proposed into a WF optimization to handle hybrid indeterminacies, which can increase the robustness of decision-making. The WF optimization with proposed TSFL method can be applied to a practical case of Beijing-Tianjin-Hebei (BTH) region. The obtained results associated with water deficits, optimal water allocations, inadequate capacities of food production, rational irrigation schedules, sound livestock scales, optimized agricultural possessing layouts and system benefits under various population-economy regulation scenarios can be obtained. The results can reflect the tradeoff between economic development and water-food safety; meanwhile, they can display risk violation of WF plan under various credibility levels and Laplace criterions (based on TSFL method). All above results can facilitate to produce an optimized water-food plan to support the synergetic development of BTH region in a robust manner. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available