4.7 Article

Fragment Binding Pose Predictions Using Unbiased Simulations and Markov-State Models

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 15, Issue 9, Pages 4974-4981

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b00069

Keywords

-

Ask authors/readers for more resources

Predicting the costructure of small-molecule ligands and their respective target proteins has been a long-standing problem in drug discovery. For weak binding compounds typically identified in fragment-based screening (FBS) campaigns, determination of the correct binding site and correct binding mode is usually done experimentally via X-ray crystallography. For many targets of pharmaceutical interest, however, establishing an X-ray system which allows for sufficient throughput to support a drug discovery project is not possible. In this case, exploration of fragment hits becomes a very laborious and consequently slow process with the generation of protein/ligand cocrystal structures as the bottleneck of the entire process. In this work, we introduce a computational method which is able to reliably predict binding sites and binding modes of fragment-like small molecules using solely the structure of the apoprotein and the ligand's chemical structure as input information. The method is based on molecular dynamics simulations and Markov-state models and can be run as a fully automated protocol requiring minimal human intervention. We describe the application of the method to a representative subset of different target classes and fragments from historical FBS efforts at Boehringer Ingelheim and discuss its potential integration into the overall fragment-based drug discovery workflow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available