4.5 Article

An acute decrease in plasma membrane tension induces macropinocytosis via PLD2 activation

Journal

JOURNAL OF CELL SCIENCE
Volume 132, Issue 17, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.232579

Keywords

PLD2 nanodomain; Phosphatidic acid; Mechanical transduction; Endocytosis

Categories

Funding

  1. Ministry of Science and Technology [107-3017-F-002-002]
  2. National Taiwan University [NTU-CDP-106R7808]
  3. National Science Foundation [NSF-1612917]

Ask authors/readers for more resources

Internalization of macromolecules and membrane into cells through endocytosis is critical for cellular growth, signaling and plasma membrane (PM) tension homeostasis. Although endocytosis is responsive to both biochemical and physical stimuli, how physical cues modulate endocytic pathways is less understood. Contrary to the accumulating discoveries on the effects of increased PM tension on endocytosis, less is known about how a decrease of PM tension impacts on membrane trafficking. Here, we reveal that an acute decrease of PM tension results in phosphatidic acid (PA) production, F-actin and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P-2]-enriched dorsal membrane ruffling and subsequent macropinocytosis in myoblasts. The PA production induced by decreased PM tension depends on phospholipase D2 (PLD2) activation via PLD2 nanodomain disintegration. Furthermore, the 'decreased PM tension- PLD2-macropinocytosis' pathway is prominent in myotubes, reflecting a potential mechanism of PM tension homeostasis upon intensive muscle stretching and relaxation. Together, we identify a new mechanotransduction pathway that converts an acute decrease in PM tension into PA production and then initiates macropinocytosis via actin and PI(4,5)P-2-mediated processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available