4.7 Article

Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56

Journal

JOURNAL OF CELL BIOLOGY
Volume 218, Issue 10, Pages 3188-3199

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.201905026

Keywords

-

Categories

Funding

  1. Medical Research Council Senior Non-Clinical Research fellowship [MR/K006703/1]
  2. Biotechnology and Biological Sciences Research Council Strategic LoLa grant [BB/M00354X/1]
  3. BBSRC [BB/M00354X/1] Funding Source: UKRI
  4. MRC [MR/K006703/1] Funding Source: UKRI

Ask authors/readers for more resources

During mitosis, the formation of microtubule-kinetochore attachments is monitored by the serine/threonine kinase monopolar spindle 1 (MPS1). MPS1 is recruited to unattached kinetochores where it phosphorylates KNL1, BUB1, and MAD1 to initiate the spindle assembly checkpoint. This arrests the cell cycle until all kinetochores have been stably captured by microtubules. MPS1 also contributes to the error correction process rectifying incorrect kinetochore attachments. MPS1 activity at kinetochores requires autophosphorylation at multiple sites including threonine 676 in the activation segment or T-loop. We now demonstrate that the BUBR1-bound pool of PP2A-B56 regulates MPS1 T-loop autophosphorylation and hence activation status in mammalian cells. Overriding this regulation using phosphomimetic mutations in the MPS1 T-loop to generate a constitutively active kinase results in a prolonged mitotic arrest with continuous turnover of microtubule-kinetochore attachments. Dynamic regulation of MPS1 catalytic activity by kinetochore-localized PP2A-B56 is thus critical for controlled MPS1 activity and timely cell cycle progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available