4.8 Article

Synergy of nanoconfinement and promotion in the design of efficient supported iron catalysts for direct olefin synthesis from syngas

Journal

JOURNAL OF CATALYSIS
Volume 376, Issue -, Pages 1-16

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2019.06.035

Keywords

Fischer-Tropsch; In-situ XANES; Light olefins; Nanoconfinement; Promotion; Catalyst stability

Funding

  1. China Scholarship Council
  2. Chevreul Institute [FR 2638]
  3. Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation
  4. Hauts-de-France Region
  5. FEDER
  6. French National Research Agency [ANR-16-CE06-0013]
  7. European Union (Interreg V project PSYCHE)
  8. Region Haute-Normandie
  9. Metropole Rouen Normandie
  10. CNRS via LABEX EMC
  11. French National Research Agency as a part of the program Investissements d'avenir [ANR-11-EQPX-0020]

Ask authors/readers for more resources

Light olefins are important building blocks in chemical industry. High temperature Fischer-Tropsch synthesis provides a remarkable opportunity for direct synthesis of light olefins from syngas derived from a wide range of alternative feedstocks (biomass, organic or plastic wastes, natural gas, shale gas or coal). The present work focuses on the combined effects of the iron nanoconfinement, on the one hand, and promotion with bismuth and lead, on the other hand, on the structure and catalytic performance of iron catalysts supported by carbon nanotubes in high temperature Fischer-Tropsch synthesis. A wide range of techniques (TEM, XRD, TPR, synchrotron-based XPS, in-situ XANES and in-situ magnetic measurements) was used to characterize the catalysts. Iron carbidization proceeds much easier for iron species confined inside carbon nanotubes and promoted with Bi and Pb. Iron nanoconfinement inside carbon nanotubes combined with the promotion with Bi or Pb result in a 10-fold higher yield of light olefins. Nanoconfinement in carbon nanotubes mostly leads to better iron dispersion and stability, while the intrinsic activity is only slightly affected. Promotion with Bi and Pb results in a major increase in the site intrinsic activity in both confined and non-confined catalysts. Moreover, over the optimised promoted and confined catalysts, Fischer-Tropsch synthesis occurs even under atmospheric pressure with high conversion and enhanced selectivity to light olefins. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available