4.7 Article

Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 38, Issue 11, Pages 3296-3306

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2019.1656109

Keywords

Aptamers; influenza virus; QSAR; IIC; nucleobase sequence

Ask authors/readers for more resources

This study describes in silico designing of aptamers against the influenza virus using Monte Carlo method. Aptamers are short, single-stranded oligonucleotides and these bind to an ample range of biologically important proteins which are related to many disease conditions. The affinities and specificities of aptamers are comparable to antibodies. In the medicinal chemistry, quantitative structure-activity relationship (QSAR) is an important skill which is used for drug design and development. To study the inhibitory activity of aptamers, we have developed QSAR models based on Monte Carlo method. The nucleobase sequence descriptors B-k, BBk and BBBk are used to generate the QSAR models. A number of statistical benchmarks together with index of ideality of correlation (IIC) is considered to validate the build QSAR models. Data set of 98 aptamers is divided into four random splits. The statistical criteria R-2 = 0.8711 and CCC = 0.9207 of the validation set of split 3 are best, so the build QSAR model of split 3 is the paramount model. The aptamer fragment responsible for the promotors of endpoint increase and decrease are also determined. These fragments are applied to design new nine aptamers from the lead aptamer APT01. Communicated by Ramaswamy H. Sarma

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available