4.2 Article

MicroRNA-29a Involvement in Phenotypic Transformation of Venous Smooth Muscle Cells Via Ten-Eleven Translocation Methylcytosinedioxygenase 1 in Response to Mechanical Cyclic Stretch

Publisher

ASME
DOI: 10.1115/1.4044581

Keywords

mechanical cyclic stretch; TET1; miR-29a-3p; venous smooth muscle cells; phenotypic transformation; vein graft

Funding

  1. National Natural Science Foundation of China [31670958, 11782198, 11625209, 31570949, 10.13039/501100001809]

Ask authors/readers for more resources

Mechanical stimuli play an important role in vein graft restenosis and the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are pathological processes contributing to this disorder. Here, based on previous high-throughput sequencing data from vein grafts, miR-29a-3p and its target, the role of Ten-eleven translocation methylcytosinedioxygenase 1 (TET1) in phenotypic transformation of VSMCs induced by mechanical stretch was investigated. Vein grafts were generated by using the cuff technique in rats. Deep transcriptome sequencing revealed that the expression of TET1 was significantly decreased, a process confirmed by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis. MicroRNA-seq showed that miR-29a-3p was significantly up-regulated, targeting TET1 as predicted by Targetscan. Bioinformatics analysis indicated that the co-expressed genes with TET1 might modulate VSMC contraction. Venous VSMCs exposed to 10%-1.25 Hz cyclic stretch by using the Flexcell system were used to simulate arterial mechanical conditions in vitro. RT-qPCR revealed that mechanical stretch increased the expression of miR-29a-3p at 3 h. Western blot analysis showed that TET1 was significantly decreased, switching contractile VSMCs to cells with a synthetic phenotype. miR-29a-3p mimics (MI) and inhibitor (IN) transfection confirmed the negative impact of miR-29a-3p on TET1. Taken together, results from this investigation demonstrate that mechanical stretch modulates venous VSMC phenotypic transformation via the mediation of the miR-29a-3p/TET1 signaling pathway. miR-29a-3p may have potential clinical implications in the pathogenesis of remodeling of vein graft restenosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available