4.5 Article

Longitudinal analysis of body weight and average daily feed intake during the feedlot test period in Angus cattle

Journal

JOURNAL OF ANIMAL BREEDING AND GENETICS
Volume 137, Issue 3, Pages 281-291

Publisher

WILEY
DOI: 10.1111/jbg.12439

Keywords

beef cattle; body weight; feed efficiency; feed intake; model comparison; random regression

Funding

  1. Meat and Livestock Australia [B.SBP.0089, PSH.0528]
  2. Angus Society of Australia [PSH.0528]

Ask authors/readers for more resources

The objectives of this study were to compare different models for analysing body weight (BW) and average daily feed intake (ADFI) data collected during a 70-day feedlot test period and to explore whether genetic parameters change over time to evaluate the implications of selection response. (Co)variance components were estimated using repeatability and random regression models in 2,071 Angus steers. Models included fixed effects of contemporary group, defined as herd-year-observation_date-age, with additive genetic and permanent environmental components as random effects. Models were assessed based on the log likelihood, Akaike's information criterion and the Bayesian information criterion. For both traits, random regression models (RRMs) presented a better fit, indicating that genetic parameters change over the test period. Using a two-trait RRM, the heritability from day 1 up to day 70 for BW increased from 0.40 to 0.50, while for ADFI, it decreased from 0.44 to 0.33. The genetic correlation increased from 0.53 at day 1 up to 0.79 at day 70. Selection based on an index assuming no change in genetic parameters would yield a 2.78%-3.13% lower selection response compared to an index using parameters estimated with RRMs and assuming these genetic parameters are correct. Results imply that it may be beneficial to implement RRMs to account for the change of parameters across the feedlot period in feed efficiency traits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available