4.7 Article

Attitude estimation for collision recovery of a quadcopter unmanned aerial vehicle

Journal

INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH
Volume 38, Issue 10-11, Pages 1286-1306

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0278364919867397

Keywords

UAV; collision; state estimation; attitude estimation; quadcopter; inertial measurement unit; observer; quaternion

Categories

Funding

  1. NSERC Canadian Field Robotics Network (NCFRN)

Ask authors/readers for more resources

An extensive evaluation of attitude estimation algorithms in simulation and experiments is performed to determine their suitability for a collision recovery pipeline of a quadcopter unmanned aerial vehicle. A multiplicative extended Kalman filter (MEKF), unscented Kalman filter (UKF), complementary filter, H infinity filter, and novel adaptive varieties of the selected filters are compared. The experimental quadcopter uses a PixHawk flight controller, and the algorithms are implemented using data from only the PixHawk inertial measurement unit (IMU). Performance of the aforementioned filters is first evaluated in a simulation environment using modified sensor models to capture the effects of collision on inertial measurements. Simulation results help define the efficacy and use cases of the conventional and novel algorithms in a quadcopter collision scenario. An analogous evaluation is then conducted by post-processing logged sensor data from collision flight tests, to gain new insights into algorithms' performance in the transition from simulated to real data. The post-processing evaluation compares each algorithm's attitude estimate, including the stock attitude estimator of the PixHawk controller, to data collected by an offboard infrared motion capture system. Based on this evaluation, two promising algorithms, the MEKF and an adaptive H infinity filter, are selected for implementation on the physical quadcopter in the control loop of the collision recovery pipeline. Experimental results show an improvement in the metric used to evaluate experimental performance, the time taken to recover from the collision, when compared with the stock attitude estimator on the PixHawk (PX4) software.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available