4.7 Article

Risk assessment and QbD based optimization of an Eprosartan mesylate nanosuspension: In-vitro characterization, PAMPA and in-vivo assessment

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 567, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ijpharm.2019.06.006

Keywords

Nanosuspension; Bioavailability; Quality by design; Risk assessment; PAMPA permeability

Funding

  1. Department of Science and Technology, New Delhi, India under Women scientist scheme [SR/WOS-A/LS-248/2012]

Ask authors/readers for more resources

Quality by design (QbD) principles were implemented to understand the product and process variables of so noprecipitation technique, for preparation of eprosartan mesylate (EM) nanosuspension. Quality risk management approach was utilized to identify and assess high-risk attributes affecting critical quality attributes (CQA's), prioritizing the number of experiments. The effect of critical material attributes (CMA's) and critical process parameters (CPP's) (soluplus concentration, drug concentration ultrasonication amplitude) on z-average particle size and PDI were investigated using a central composite face-centered design (CCF). Further, design space with criteria set of CMA's and CPP's was established to offer assurance of quality. The optimal formulation, identified using numerical optimization method, was further lyophilized and evaluated for redispersibility, solubility saturation, dissolution kinetic and in-vitro dissolution behavior. The EM nanoparticles were in an amorphous state as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The stability study conducted for a span of 6 months attests physical and chemical stability of EM dry nanosuspension in an amorphous state when stored at 4 degrees C. The enhanced solubility and in-vitro dissolution of EM nanosuspension may be attributed to the reduced particle size and alteration of the physical state from a crystalline to an amorphous state. Further, the optimized formulation was subjected to in-vitro and ex-vivo transport study using parallel artificial membrane permeability assay (PAMPA) and rat everted gut sac model respectively. The transport studies revealed successful permeation enhancement of EM nanoparticle when compared with EM API and physical mixture (PM). The absolute bioavailability of EM API was 7.1% and improved to 39.9% for EM nanosuspension, suggesting that nanoformulation had overcome solubility and permeability limited bioavailability which was observed with EM API.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available