4.7 Article

Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy

Journal

INTERNATIONAL JOURNAL OF NANOMEDICINE
Volume 14, Issue -, Pages 7419-7429

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S211224

Keywords

graphene; photothermal; chitosan; hybrid nanoparticles; HNP; prostate cancer

Funding

  1. Deanship of Scientific Research, King Faisal University, Al-Ahsa, Saudi Arabia [17122014]

Ask authors/readers for more resources

Background: Prostate cancer (PC) has the highest prevalence in men and accounts for a high rate of neoplasia-related death. Doxorubicin (DOX) is one of the most widely used antineoplastic drugs for prostate cancer among others. However, it has low specificity and many side effects and affects normal cells. More recently, there have been newly developed drug delivery tools which are graphene or graphene-based, used to increase the specificity of the delivered drug molecules. The graphene derivatives possess both n-n stacking and increased hydrophobicity, factors that increase the likelihood of drug delivery. Despite this, the hydrophilicity of graphene remains problematic, as it induced problems with stability. For this reason, the use of a chitosan coating remains one way to modify the surface features of graphene. Method: In this investigation, a hybrid nanoparticle that consisted of a DOX-loaded reduced graphene oxide that is stabilized with chitosan (rGOD-HNP) was developed. Result: The newly developed rGOD-HNP demonstrated high biocompatibility and efficiency in entrapping DOX (similar to 65%) and releasing it in a controlled manner (similar to 50% release in 48 h). Furthermore, it was also demonstrated that rGOD-HNP can intracellularly deliver DOX and more specifically in PC-3 prostate cancer cells. Conclusion: This delivery tool offers a feasible and viable method to deliver DOX photo-thermally in the treatment of prostate cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available