4.2 Article

Thermodynamics of scalar field models with kinetic corrections

Journal

INTERNATIONAL JOURNAL OF MODERN PHYSICS D
Volume 28, Issue 15, Pages -

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0218271819501633

Keywords

Thermodynamics; noncanonical scalar field; Unified first law; apparent/event horizon

Funding

  1. SERB, Department of Science and Technology India [CRG/2018/001035]
  2. Associate program of IUCAA

Ask authors/readers for more resources

In this work, we compare the thermodynamical viability of two types of noncanonical scalar field models with kinetic corrections: the square kinetic and square root kinetic corrections. In modern cosmology, the generalized second law of thermodynamics (GSLT) plays an important role in deciding thermodynamical compliance of a model as one cannot consider a model to be viable if it fails to respect GSLT. Hence, for comparing thermodynamical viability, we examine the validity of GSLT for these two models. For this purpose, by employing the Unified first law (UFL), we calculate the total entropy of these two models in apparent and event horizons. The validity of GSLT is then examined from the autonomous systems as the original expressions of total entropy are very complicated. Although, at the background level, both models give interesting cosmological dynamics, however, thermodynamically we found that the square kinetic correction is more realistic as compared to the square root kinetic correction. More precisely, the GSLT holds for the square kinetic correction throughout the evolutionary history except only during the radiation epoch where the scalar field may not represent a true description of the matter content. On the other hand, the square root kinetic model fails to satisfy the GSLT in major cosmological eras.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available