4.7 Article

Additively manufactured 316L stainless steel: An efficient electrocatalyst

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 44, Issue 45, Pages 24698-24704

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2019.07.217

Keywords

Additive manufacturing; Stainless steel; OER; Overpotential

Ask authors/readers for more resources

In the quest of finding an economical, yet efficient material, the idea of fabricating 316L stainless steel using additive manufacturing technology was explored to produce material with refined sub-granular structure. The surface of the stainless steel was further chemically treated with an etching solution to expose the grain boundaries. The grain boundary enriched surface resulted in more active sites for the oxygen evolution reaction (OER) in additively manufactured treated (AM-T) 316L stainless steel. AM-T sample manifests enhanced catalytic activity for OER with an overpotential of 310 mV to draw a 10 mA/cm(2) current density, along with a lower Tafel slope of 42 mV/dec compared to AM and wrought samples. These features were validated from the increased double-layer capacitance of AM-T and approximately 1.5 times larger electrochemically effective surface area of AM-T due to etching treatment compared to the wrought sample. Furthermore, AM-T also possesses stable activity retention for 100 h at a current density of 10 mA/cm(2). (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available