4.7 Article

Three-dimensional gelatin/PVA scaffold with nanofibrillated collagen surface for applications in hard-tissue regeneration

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.05.076

Keywords

Collagen; Fibrillation; Nano-fibrous; Bone

Funding

  1. National Research Foundation of Korea - Ministry of Education, Science, and Technology (MEST) [NRF-2018R1A2B2005263]
  2. National Research Foundation of Korea (NRF) - Ministry of Science and ICT for Bio-inspired Innovation Technology Development Project [NRF-2018M3C1B7021997]

Ask authors/readers for more resources

The surface topography of a tissue-engineered scaffold is widely known to play an essential role in bone tissue engineering applications. Therefore, the cell-to-material interaction should be considered when developing scaffolds for bone tissue regeneration. Bone is a dynamic tissue with a distinct hierarchical structure composed of mostly collagen and bioceramics. In this study, the surface of gelatin/PVA scaffold (CF-G5P5) coated with fibrillated collagen was fabricated to enhance cell proliferation and osteogenic differentiation for bone tissue regeneration. The physical and biological properties of the fabricated scaffolds were investigated. As a result, the CF-G5P5 scaffold increased surface roughness and increased protein absorption compared to a gelatin/PVA scaffold (G5P5) by 1.6 times from OD value 0.43 to 0.71 after 12 h, cell proliferation increased 1.7 times from OD value 0.57 to 0.96, and differentiation increased by 1.5 times from 100 to 151%. Based on the results, the CF-G5P5 scaffold developed can be considered as a highly potential bone tissue regenerative material. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available