4.7 Article

Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice

Journal

INTERNATIONAL IMMUNOPHARMACOLOGY
Volume 74, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.intimp.2019.105682

Keywords

Psoriasis; Cycloastragenol; Pyroptosis; NLRP3 inflammasome; Imiquimod

Funding

  1. National Natural Science Foundation of China [81872877, 81673436, 81772002, 81704099]
  2. Mountain -Climbing Talents Project of Nanjing University

Ask authors/readers for more resources

Psoriasis is a common chronic inflammatory skin disease, and the infiltrated macrophages in psoriatic skin lesions play a key role in the progression of this uncontrolled cutaneous inflammation. However, the current therapeutic strategies for patients with psoriasis are not satisfactory. Here, we report that cycloastragenol (CAG), a natural active small compound isolated from Astragalus membranaceus, significantly ameliorated imiquimod (IMQ)-induced psoriasiform dermatitis in mice by targeting proinflammatory macrophages. CAG significantly reduced the clinical scores, decreased the epidermal thickness, and ameliorated the deteriorating histopathology observed in IMQ-induced mice. CAG treatment specifically reduced the dermal infiltration of macrophages, rather than of dendritic cells, neutrophils, or T lymphocytes, into psoriatic skin. CAG dose-dependently decreased the level of proinflammatory cytokines, including IL-beta, TNF-alpha and IL-6, in murine psoriatic skin and serum, as well as in IMQ-stimulated, bone-marrow-derived macrophages. When compared to the control group, CAG significantly decreased IMQ-triggered NLRP3 inflammasome activation and gasdermin D-mediated cell pyroptosis in these proinflammatory macrophages. CAG also suppressed the assembly of the NLRP3 inflammasome complex. Taken together, the results show that CAG selectively modulates macrophage function by inhibiting NLRP3 inflammasome-mediated pyroptosis to ameliorate IMQ-induced psoriasis-like skin inflammation in mice. Our findings also identify an effective drug candidate for the treatment of psoriasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available