4.7 Article

Data-driven dynamic resource scheduling for network slicing: A Deep reinforcement learning approach

Journal

INFORMATION SCIENCES
Volume 498, Issue -, Pages 106-116

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2019.05.012

Keywords

Data-driving; End-to-End; Deep reinforcement learning; Network slicing

Funding

  1. Huawei Technologies under the HIRP project [HO201705000106]

Ask authors/readers for more resources

Network slicing is designed to support a variety of emerging applications with diverse performance and flexibility requirements, by dividing the physical network into multiple logical networks. These applications along with a massive number of mobile phones produce large amounts of data, bringing tremendous challenges for network slicing performance. From another perspective, this huge amount of data also offers a new opportunity for the management of network slicing resources. Leveraging the knowledge and insights retrieved from the data, we develop a novel Machine Learning-based scheme for dynamic resource scheduling for networks slicing, aiming to achieve automatic and efficient resource optimisation and End-to-End (E2E) service reliability. However, it is difficult to obtain the user related data, which is crucial to understand the user behaviour and requests, due to the privacy issue. Therefore, Deep Reinforcement Learning (DRL) is leveraged to extract knowledge from experience by interacting with the network and enable dynamic adjustment of the resources allocated to various slices in order to maximise the resource utilisation while guaranteeing the Quality-of-Service (QoS). The experiment results demonstrate that the proposed resource scheduling scheme can dynamically allocate resources for multiple slices and meet the corresponding QoS requirements. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available