4.8 Article

A Novel Active Gate Driver for Improving Switching Performance of High-Power SiC MOSFET Modules

Journal

IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume 34, Issue 8, Pages 7775-7787

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2018.2878779

Keywords

Active gate driver (AGD); electromagnetic interference (EMI); silicon carbide (SiC) MOSFET; overshoots

Funding

  1. National Natural Science Foundation of China [51477138]
  2. Key Research and Development Program of Shaanxi in Shaanxi, China [2017ZDXM-GY-130]
  3. College Talent Service Enterprise Engineering [2017080CG/RC043(XALG009)]

Ask authors/readers for more resources

Featuring higher switching speed and lower losses, the silicon carbide MOSFETs (SiC MOSFETs) are widely used in higher power density and higher efficiency power electronic applications as a new solution. However, the increase of the switching speed induces oscillations, overshoots, electromagnetic interference (EMI), and even additional losses. In this paper, a novel active gate driver (AGD) for high-power SiC MOSFETs is presented to fully utilize its potential of high-speed characteristic under different operation temperatures and load currents. The principle of the AGD is based on drive voltage decrement during the voltage and current slopes since high dV/dt and dI/dt are the source of the overshoots, oscillations, and EMI problems. In addition, the optimal drive voltage switching delay time has been analyzed and calculated considering a tradeoff between switching losses and switching stresses. Compared to conventional gate driver with fixed drive voltage, the proposed AGD has the capability of suppressing the overshoots, oscillations, and reducing losses without compromising the EMI. Finally, the switching performance of the AGD was experimentally verified on 1.2 kV/300 A and 1.7 kV/300 A SiC MOSFETs in double pulse test under different operation temperatures and load currents. In addition, an EMI discussion and cost analysis were realized for AGD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available