4.7 Article

Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection

Journal

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
Volume 68, Issue 9, Pages 3350-3357

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIM.2018.2875961

Keywords

Graphene oxide (GO); high sensitivity; human immunoglobulin G (IgG); staphylococcal protein A (SPA); surface plasmon resonance (SPR) biosensor; tilted fiber Bragg grating (TFBG)

Funding

  1. Natural Science Foundation of Liaoning Province [201602262]
  2. Fundamental Research Funds for the Central Universities [N160405001]

Ask authors/readers for more resources

A highly sensitive optical fiber surface plasmon resonance (SPR) biosensor based on graphene oxide (GO) and staphylococcal protein A (SPA) co-modified tilted fiber Bragg grating (TFBG) is proposed and demonstrated for the detection of human immunoglobulin G (IgG) for the first time. The gold film on the surface of the sensor was first fixed with GO and then modified with an SPA to improve the sensitivity of the sensor. Large specific surface area and abundant functional groups of GO can adsorb more antibodies. The combination of SPA and the antibody molecule Fc region makes the Fab area with antigen-binding sites extend outward, resulting in highly oriented antibody immobilization on the sensor surface and high antigen-antibody binding efficiency. The experimental results show that the sensitivity as well as the limit of detection of GO-SPA-modified TFBG-SPR biosensor is around 0.096 dB/(mu g/mL) and 0.5 mu g/mL, showing better responses to human IgG solutions with a concentration range of 30-100 mu g/mL compared with the TFBG-SPR biosensors modified singly with GO or SPA. The biosensor exhibits the advantages of small size, ease of fabrication, high sensitivity, label-free, and rapid response, and provides a new solution for detecting low concentration of biological solution, presenting great application potential in the biochemistry field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available