4.8 Article

Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments

Journal

GLOBAL CHANGE BIOLOGY
Volume 25, Issue 12, Pages 4165-4178

Publisher

WILEY
DOI: 10.1111/gcb.14806

Keywords

carbon sequestration; climate change; enhanced CO2; hypoxia; infauna; macroalgal detritus; multiple stressors; stable isotope

Funding

  1. NERC [NE/L003279/1, pml010004, pml010003] Funding Source: UKRI
  2. Department for the Environment, Food and Rural Affairs Funding Source: Medline
  3. MIUR Funding Source: Medline
  4. Natural Environment Research Council Funding Source: Medline
  5. TETRIS [PRIN 2010] Funding Source: Medline
  6. Marine Ecosystems Research Programme [NE/L003279/1] Funding Source: Medline

Ask authors/readers for more resources

Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (C-13) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (C-13), previously exposed to elevated CO2, were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2. At elevated CO2, infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short-term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft-sediment systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available