4.6 Article

Relevance of the iron-responsive element (IRE) pseudotriloop structure for IRP1/2 binding and validation of IRE-like structures using the yeast three-hybrid system

Journal

GENE
Volume 710, Issue -, Pages 399-405

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2019.06.012

Keywords

Pseudotriloop; Iron-responsive element; RNA structure; Iron-regulatory protein; RNA-protein interaction; Yeast three-hybrid system

Funding

  1. VIDI grant from the Netherlands Organization for Scientific Research (NWO)

Ask authors/readers for more resources

Iron-responsive elements (IREs) are similar to 35-nucleotide (nt) stem-loop RNA structures located in 5' or 3' untranslated regions (UTRs) of mRNAs that mediate post-transcriptional regulation by their association with IRE-binding proteins (IRPs). IREs are characterized by their apical 6-nt loop motif 5'-CAGWGH-3' (W = A or U and H = A, C or U), the so-called pseudotriloop, of which the loop nts C1 and G5 are paired, and the none-paired C between the two stem regions. In this study, the yeast three-hybrid (Y3H) system was used to investigate the relevance of the pseudotriloop structure of ferritin light chain (FTL) for the IRE-IRP interaction and the binding affinities between variant IRE(-like) structures and the two IRP isoforms, IRP1 and 2. Destabilization of the pseudotriloop structure by a G5-to-A mutation reduced binding of IRP1 and 2, while restoring the pseudotriloop conformation by the compensatory Cl-to-U mutation, restored binding to both IRPs. In particular, IRP1 showed even stronger binding to the C1U-G5A mutant than to the wildtype FTL IRE. On the other hand, deletion of the bulged-out 1.16 of the pseudotriloop did not significantly affect its binding to either IRP1 or 2, but substitution with C particularly enhanced the binding to IRP1. In comparison to FTL IRE, IRE-like structures of 5'-amino-levulinate synthase 2 (ALAS2) and SLC40A1 (also known as ferroportin-1) showed similar or, in the case of endothelial PAS domain protein 1 (EPAS1) IRE, slightly weaker binding affinity to IRPs. SLC11A2 (a.k.a. divalent metal transporter-1) IRE exhibited relatively weak binding to IRP1 and medium binding to IRP2. Notably, the IRE-like structure of alpha-synuclein showed no detectable binding to either IRP under the conditions used in this Y3H assay. Our results indicate that Y3H can be used to characterize binding between IRPs and various IRE-like structures in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available