4.5 Article

Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize

Journal

FUNCTIONAL & INTEGRATIVE GENOMICS
Volume 20, Issue 2, Pages 261-275

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10142-019-00707-x

Keywords

Salinity; Zea mays; Maize; Salt tolerance; Gene expression; GWA

Funding

  1. Agricultural Research Service [2036-13210-012-00-D] Funding Source: Medline
  2. National Institute of Food and Agriculture [SC-1700520] Funding Source: Medline

Ask authors/readers for more resources

Progressive decline in irrigation water is forcing farmers to use brackish water which increases soil salinity and exposes the crop plants to salinity. Maize, one of the most important crops, is sensitive to salinity. Salt tolerance is a complex trait controlled by a number of physiological and biochemical processes. Scant information is available on the genetic architecture of salt tolerance in maize. We evaluated 399 inbred lines for six early vigor shoot and root traits upon exposure of 18-day seedlings to salinity (ECiw = 16 dS m(-1)) stress. Contrasting response of shoot and root growth to salinity indicated a meticulous reprogramming of resource partitioning by the plants to cope with the stress. The genomic analysis identified 57 single nucleotide polymorphisms (SNP) associated with early vigor traits. Candidate genes systematically associated with each SNP include both previously known and novel genes. Important candidates include a late embryogenesis protein, a divalent ion symporter, a proton extrusion protein, an RNA-binding protein, a casein kinase 1, and an AP2/EREBP transcription factor. The late embryogenesis protein is associated with both shoot and root length, indicating a coordinated change in resource allocation upon salt stress. Identification of a casein kinase 1 indicates an important role for Ser/Thr kinases in salt tolerance. Validation of eight candidates based on expression in a salt-tolerant and a salt-sensitive inbred line supported their role in salt tolerance. The candidate genes identified in this investigation provide a foundation for dissecting genetic and molecular regulation of salt tolerance in maize and related grasses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available