4.3 Article

Physicochemical Properties of Foam-Templated Oleogel Based on Gelatin and Xanthan Gum

Journal

Publisher

WILEY
DOI: 10.1002/ejlt.201900196

Keywords

cryogel; gelatin; oleogel; oxidative stability; rheology; xanthan

Funding

  1. Isfahan University of Technology

Ask authors/readers for more resources

In this paper, gelatin and xanthan are applied to produce a foam-templated oleogel. For this reason, the oleogel is prepared at different concentrations of biopolymers and the properties of solution, cryogel, and related oleogel are determined. The results show that xanthan addition increases viscosity and foam stability of solution. Also, an increment in biopolymer concentration increases cryogel network density (ND) and firmness but has no significant effect on moisture sorption. The oil binding capacity of all oleogels is >92%. In terms of high foam stability (96.87 +/- 4.42), low ND (0.016 +/- 0.00), and consequently suitable oil sorption (46.10 +/- 4.40), the oleogel containing 3% gelatin and 0.2% xanthan is selected as the best sample. Complementary tests exhibit that the oleogel, with thixotropic behavior and 60% structural recovery, can bind the oil at temperature <100 degrees C. The oleogel network can protect the edible oil from oxidative reaction during 2 month storage. Nonetheless, more studies are needed to attest the application of this oleogel type in food products. Practical Application: Biopolymers of gelatin and xanthan are GRAS and available so that they are applied in many food products. This research shows that the cryogel of these biopolymers, as a hydrophilic oleogelator, can be utilized to structure oil and produce oleogel in an indirect method. This procedure that forms strong gel and keeps oil even at high temperatures can be of interest to scientists who are searching for solid fat substitutes in food products such as cakes, biscuits, and muffins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available