4.7 Article

Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 27, Issue 9, Pages 9000-9011

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-06126-6

Keywords

Groundwater quality; Contamination; Nitrogen; Principle component analysis; Land use; Spatial analysis

Ask authors/readers for more resources

Identification of different pollution sources in groundwater is challenging, especially in areas with diverse land uses and receiving multiple inputs. In this study, principal component analysis (PCA) was combined with geographic information system (GIS) to explore the spatial and temporal variation of groundwater quality and to identify the sources of pollution and main factors governing the quality of groundwater in a multiple land-use area in southwestern China. Groundwater samples collected from 26 wells in 2012 and 38 wells in 2018 were analyzed for 13 water quality parameters. The PCA results showed that the hydro-geochemical process was the predominant factor determining groundwater quality, followed by agricultural activities, domestic sewage discharges, and industrial sewage discharges. Agriculture expansion from 2012 to 2018 resulted in increased apportionment of agricultural pollution. In contrast, economic restructure and infrastructure improvement reduced the contributions of domestic sewage and industrial pollution. Anthropogenic activities were found the major causes of elevated nitrogen concentrations (NO3-, NO2-, NH4+) in groundwater, highlighting the necessity of controlling N sources through effective fertilizer managements in agricultural areas and reducing sewage discharges in urban areas. The applications of GIS and PCA successfully identified the sources of pollutants and major factors driving the variations of groundwater quality in tested years.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available