4.7 Article

TiO2 nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 26, Issue 29, Pages 29872-29882

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-019-06148-0

Keywords

Azolla filiculoides; Cadmium; Histochemistry; Oxidative stress; Photosynthetic efficiency; TiO2 nanoparticles

Funding

  1. University of Pisa

Ask authors/readers for more resources

The hydrophyte Azolla filiculoides can be a useful model to assess if TiO2 NPs may in some way alleviate the Cd injuries and improve the ability of the plant to cope with this metal. With this mechanistic hypothesis, after a pre-treatment with TiO2 NPs, A. filiculoides plants were transferred to cadmium-contaminated water with or without TiO2 nanoparticles. After 5 days of treatment, cadmium uptake, morpho-anatomical, and physiological aspects were studied in plants. The continuous presence of TiO2 nanoparticles, though not increasing the uptake of cadmium in comparison with a priming treatment, induced a higher translocation of this heavy metal to the aerial portion. Despite the translocation factor was always well below 1, cadmium contents in the fronds, generally greater than 100 ppm, ranked A. filiculoides as a good cadmium accumulator. Higher cadmium contents in leaves did not induce damages to the photosynthetic machinery, probably thanks to a compartmentalization strategy aimed at confining most of this pollutant to less metabolically active peripheral cells. The permanence of NPs in growth medium ensured a better efficiency of the antioxidant apparatus (proline and glutathione peroxidase and catalase activities) and induced a decrease in H2O2 content, but did not suppress TBARS level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available