4.7 Article

Enhanced Recovery from Gas Condensate Reservoirs through Renewable Energy Sources

Journal

ENERGY & FUELS
Volume 33, Issue 10, Pages 10115-10122

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.9b01761

Keywords

-

Ask authors/readers for more resources

Natural gas is a rapidly growing source of energy, supplying more than a quarter of the global demand for power. Gas condensate is one type of natural gas resource in which liquid dropout can occur as the pressure decreases throughout the lifetime of the reservoir. This behavior can severely affect the productivity of the reservoir. Chemical and mechanical treatments are applied to repair such damage and restore the productivity of the well. While these types of approaches can yield some success, there is a need for more proactive strategies to eliminate this problem and minimize interference. In this research, we present a dynamic evaluation of the use of an integrated downhole heating system, where renewable energy serves as a source of downhole heating for more sustainable productivity throughout the gas condensate reservoir lifetime. The downhole heating efficiency is significantly influenced by the production rate because some portion of heat is removed with the produced gas. For that purpose, surface and subsurface calculations are coupled to investigate the limitations and the power requirements of renewable energy sources. Our study presents an integrated engineering analysis through simultaneous solving of mass and heat transfer equations coupled with surface renewable energy requirement. The presented study demonstrates the viable feasibility of this method for avoiding gas condensate problems and enhancing ultimate recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available