4.7 Article

Structure-based development of nitroxoline derivatives as potential multifunctional anti-Alzheimer agents

Journal

BIOORGANIC & MEDICINAL CHEMISTRY
Volume 23, Issue 15, Pages 4442-4452

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2015.06.010

Keywords

Alzheimer's disease; Butyrylcholinesterase; Multifunctional ligands; Chelation; Nitroxoline

Funding

  1. Slovenian Research Agency
  2. Institut Francais

Ask authors/readers for more resources

Tremendous efforts have been dedicated to the development of effective therapeutics against Alzheimer's disease, which represents the most common debilitating neurodegenerative disease. Multifunctional agents are molecules designed to have simultaneous effects on different pathological processes. Such compounds represent an emerging strategy for the development of effective treatments against Alzheimer's disease. Here, we report on the synthesis and biological evaluation of a series of nitroxoline-based analogs that were designed by merging the scaffold of 8-hydroxyquinoline with that of a known selective butyrylcholinesterase inhibitor that has promising anti-Alzheimer properties. Most strikingly, compound 8g inhibits self-induced aggregation of the amyloid beta peptide (A beta(1-42)), inhibits with sub-micromolar potency butyrylcholinesterase (IC50 = 215 nM), and also selectively complexes Cu2+. Our study thus designates this compound as a promising multifunctional agent for therapeutic treatment of Alzheimer's disease. The crystal structure of human butyrylcholinesterase in complex with compound 8g is also solved, which suggests ways to further optimize compounds featuring the 8-hydroxyquinoline scaffold. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available